支架结构的构建支持所需的基序,赋予蛋白质功能,显示出对疫苗和酶设计的希望。但是,解决这个主题交易问题的一般解决方案仍然开放。当前的脚手架设计的机器学习技术要么仅限于不切实际的小脚手架(长达20个长度),要么难以生产多种不同的脚手架。我们建议通过E(3) - 等级图神经网络学习各种蛋白质主链结构的分布。我们开发SMCDIFF以有效地从给定主题的条件下从该分布中采样脚手架;我们的算法是从理论上确保从扩散模型中的有条件样品,以大规模计算限制。我们通过与Alphafold2预测的结构保持一致的方式来评估我们设计的骨干。我们表明我们的方法可以(1)最多80个残基的样品支架,以及(2)实现固定基序的结构多样的支架。
translated by 谷歌翻译
尽管变压器语言模型(LMS)是信息提取的最新技术,但长文本引入了需要次优的预处理步骤或替代模型体系结构的计算挑战。稀疏注意的LMS可以代表更长的序列,克服性能障碍。但是,目前尚不清楚如何解释这些模型的预测,因为并非所有令牌都在自我发项层中相互参加,而在运行时,长序列对可解释性算法提出了计算挑战,而当运行时取决于文档长度。这些挑战在文档可能很长的医学环境中是严重的,机器学习(ML)模型必须是审核和值得信赖的。我们介绍了一种新颖的蒙版抽样程序(MSP),以识别有助于预测的文本块,将MSP应用于预测医学文本诊断的背景下,并通过两位临床医生的盲目审查来验证我们的方法。我们的方法比以前的最先进的临床信息块高约1.7倍,速度更快100倍,并且可用于生成重要的短语对。 MSP特别适合长LMS,但可以应用于任何文本分类器。我们提供了MSP的一般实施。
translated by 谷歌翻译
目的:目的是将先前验证的深度学习算法应用于新的甲状腺结节超声图像数据集,并将其性能与放射科医生进行比较。方法:先前的研究提出了一种能够检测甲状腺结节,然后使用两个超声图像进行恶性分类的算法。从1278个结节训练了多任务深度卷积神经网络,最初用99个单独的结节进行了测试。结果与放射科医生相当。与培训案例相比,使用来自不同制造商和产品类型的超声计算机成像的378个结节进一步测试了该算法。要求四名经验丰富的放射科医生评估结节,以与深度学习进行比较。结果:用参数,二维估计计算了深度学习算法和四个放射科医生的曲线(AUC)面积。对于深度学习算法,AUC为0.70(95%CI:0.64-0.75)。放射科医生的AUC为0.66(95%CI:0.61-0.71),0.67(95%CI:0.62-0.73),0.68(95%CI:0.63-0.73)和0.66(95%CI:95%CI:0.61-0.71)。结论:在新的测试数据集中,深度学习算法与所有四个放射科医生都达到了类似的性能。
translated by 谷歌翻译
超声检查的胎儿生长评估是基于一些生物特征测量,这些测量是手动进行并相对于预期的妊娠年龄进行的。可靠的生物特征估计取决于标准超声平面中地标的精确检测。手动注释可能是耗时的和依赖操作员的任务,并且可能导致高测量可变性。现有的自动胎儿生物特征法的方法依赖于初始自动胎儿结构分割,然后是几何标记检测。但是,分割注释是耗时的,可能是不准确的,具有里程碑意义的检测需要开发特定于测量的几何方法。本文描述了Biometrynet,这是一个克服这些局限性的胎儿生物特征估计的端到端地标回归框架。它包括一种新型的动态定向测定(DOD)方法,用于在网络训练过程中执行测量特定方向的一致性。 DOD可降低网络训练中的变异性,提高标志性的定位精度,从而产生准确且健壮的生物特征测量。为了验证我们的方法,我们组装了一个来自1,829名受试者的3,398张超声图像的数据集,这些受试者在三个具有七个不同超声设备的临床部位收购。在两个独立数据集上的三个不同生物识别测量值的比较和交叉验证表明,生物元网络是稳健的,并且产生准确的测量结果,其误差低于临床上允许的误差,优于其他现有的自动化生物测定估计方法。代码可从https://github.com/netanellavisdris/fetalbiometry获得。
translated by 谷歌翻译
使用摄像机和计算算法的生理学(例如心脏和肺)生理学的非侵入性,低成本和可扩展性测量的生命体征非常有吸引力。但是,代表各种环境,身体运动,照明条件和生理状态的各种数据是费力的,耗时且昂贵的。合成数据已被证明是机器学习的几个领域的有价值工具,但并未广泛用于摄像机测量生理状态。合成数据提供“完美”标签(例如,没有噪声且具有精确的同步),可能无法获得其他标签(例如,精确的像素级分段图),并提供了对数据集中变化和多样性的高度控制。我们提供Scamps,这是一个合成学数据集,其中包含2,800个视频(168万帧),并带有对齐的心脏和呼吸信号以及面部动作强度。 RGB框架与分割图一起提供。我们提供有关潜在波形的精确描述性统计数据,包括beat间间隔,心率变异性和脉搏到达时间。最后,我们介绍了这些合成数据和对现实世界数据集测试的基线结果培训,以说明可推广性。
translated by 谷歌翻译
自动化数据驱动的建模,直接发现系统的管理方程的过程越来越多地用于科学界。 Pysindy是一个Python包,提供用于应用非线性动力学(SINDY)方法的稀疏识别到数据驱动模型发现的工具。在Pysindy的这一主要更新中,我们实现了几种高级功能,使得能够从嘈杂和有限的数据中发现更一般的微分方程。延长候选术语库,用于识别致动系统,部分微分方程(PDE)和隐式差分方程。还实施了包括Sindy和合奏技术的整体形式的强大配方,以提高现实世界数据的性能。最后,我们提供了一系列新的优化算法,包括多元稀疏的回归技术和算法来强制执行和促进不等式约束和稳定性。这些更新在一起,可以在文献中尚未报告的全新SINDY模型发现能力,例如约束PDE识别和使用不同稀疏的回归优化器合并。
translated by 谷歌翻译
时间序列数据的生成和分析与许多从经济学到流体力学的定量字段相关。在物理科学中,诸如亚稳态和连贯的组的结构,慢松弛过程,集体变量显性过渡途径或歧管流动流动的概率流动可能非常重视理解和表征系统的动力动力学和机械性质。 Deeptime是一种通用Python库,提供各种工具来估计基于时间序列数据的动态模型,包括传统的线性学习方法,例如马尔可夫状态模型(MSM),隐藏的马尔可夫模型和Koopman模型,以及内核和深度学习方法如vampnets和深msms。该库主要兼容Scikit-Searn,为这些不同的模型提供一系列估计器类,但与Scikit-Ge劳说相比,还提供了深度模型类,例如,在MSM的情况下,提供了多种分析方法来计算有趣的热力学,动力学和动态量,例如自由能,松弛时间和过渡路径。图书馆专为易于使用而设计,而且易于维护和可扩展的代码。在本文中,我们介绍了Deeptime软件的主要特征和结构。
translated by 谷歌翻译
Camera-based physiological measurement is a growing field with neural models providing state-the-art-performance. Prior research have explored various "end-to-end" models; however these methods still require several preprocessing steps. These additional operations are often non-trivial to implement making replication and deployment difficult and can even have a higher computational budget than the "core" network itself. In this paper, we propose two novel and efficient neural models for camera-based physiological measurement called EfficientPhys that remove the need for face detection, segmentation, normalization, color space transformation or any other preprocessing steps. Using an input of raw video frames, our models achieve strong performance on three public datasets. We show that this is the case whether using a transformer or convolutional backbone. We further evaluate the latency of the proposed networks and show that our most light weight network also achieves a 33% improvement in efficiency.
translated by 谷歌翻译
While the brain connectivity network can inform the understanding and diagnosis of developmental dyslexia, its cause-effect relationships have not yet enough been examined. Employing electroencephalography signals and band-limited white noise stimulus at 4.8 Hz (prosodic-syllabic frequency), we measure the phase Granger causalities among channels to identify differences between dyslexic learners and controls, thereby proposing a method to calculate directional connectivity. As causal relationships run in both directions, we explore three scenarios, namely channels' activity as sources, as sinks, and in total. Our proposed method can be used for both classification and exploratory analysis. In all scenarios, we find confirmation of the established right-lateralized Theta sampling network anomaly, in line with the temporal sampling framework's assumption of oscillatory differences in the Theta and Gamma bands. Further, we show that this anomaly primarily occurs in the causal relationships of channels acting as sinks, where it is significantly more pronounced than when only total activity is observed. In the sink scenario, our classifier obtains 0.84 and 0.88 accuracy and 0.87 and 0.93 AUC for the Theta and Gamma bands, respectively.
translated by 谷歌翻译
There are multiple scales of abstraction from which we can describe the same image, depending on whether we are focusing on fine-grained details or a more global attribute of the image. In brain mapping, learning to automatically parse images to build representations of both small-scale features (e.g., the presence of cells or blood vessels) and global properties of an image (e.g., which brain region the image comes from) is a crucial and open challenge. However, most existing datasets and benchmarks for neuroanatomy consider only a single downstream task at a time. To bridge this gap, we introduce a new dataset, annotations, and multiple downstream tasks that provide diverse ways to readout information about brain structure and architecture from the same image. Our multi-task neuroimaging benchmark (MTNeuro) is built on volumetric, micrometer-resolution X-ray microtomography images spanning a large thalamocortical section of mouse brain, encompassing multiple cortical and subcortical regions. We generated a number of different prediction challenges and evaluated several supervised and self-supervised models for brain-region prediction and pixel-level semantic segmentation of microstructures. Our experiments not only highlight the rich heterogeneity of this dataset, but also provide insights into how self-supervised approaches can be used to learn representations that capture multiple attributes of a single image and perform well on a variety of downstream tasks. Datasets, code, and pre-trained baseline models are provided at: https://mtneuro.github.io/ .
translated by 谷歌翻译